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S1 Flux Module Descriptions

Annual global total fossil fuel CO2 emissions are from Marland et al. [1] which extend through
2003 and are then linearly extrapolated through 2005. Fluxes are spatially distributed according
to the EDGAR inventories [2] and include a seasonal cycle based on the Blasing et al. [3] analysis
for the United States. Carbon emissions in the form of CO, VOC’s, and CH4 are not accounted for
separately in this work possibly leading to slightly higher uptake [4]. Monthly fire CO2 emissions
are taken from the Global Fire Emissions Database version 2 (GFED2) [5, 6]. Ocean CO2 exchange
is based on 5◦×4◦ ∆pCO2 estimates from Takahashi et al. [7], combined with 3-hourly surface
pressure and 10m wind speed from the ECMWF model to give synoptic variations as well as inter-
annual variability identical to the procedures described in Kettle et al. [8]. Finally, NEP is created
from the monthly mean CASA Net Primary Production (NPP) and heterotrophic respiration (RH)
that include the effect of fire on the CASA simulated carbon pools in vegetation and soils, as well as
recovery of the ecosystem after burning. Higher frequency variations (diurnal, synoptic) are added
to these fluxes every 3 hours using a simple temperature Q10 relationship and linear scaling with
solar radiation, similar to the procedure in Olsen and Randerson [9].

The Olson ecosystem classification used to scale the fine scale patterns of the fluxes above
is summarized in Table 1. The scaling factors across ecoregions currently have limited physical
realism for a quite simple reason: we do not know which physical parameter in the terrestrial
biosphere controls NEP across larger areas and can be constrained from the atmosphere. Finding
this parameter is a problem for all carbon cycle scientists attempting to scale NEP information
beyond their local scope and multiple studies suggest that there is likely not one such parameter
controlling NEP, but a large set of them working on different sides of the photosynthesis and
respiration balance. The linear scaling factors we chose absorb anything that might be wrong with
the NEP magnitude from the underlying terrestrial carbon cycle model: lack of human management
component, poorly initialized carbon pools, dependence on noisy NDVI, and scaling of 3-hourly
fluxes with a simple Q10.

The choice to take linear scaling factors across a whole ecosystem furthermore assumes that the
relative NEP patterns one 1◦×1◦ produced by the terrestrial biosphere model are correct within
that ecosystem. These patterns currently depend mostly on the forcing of the CASA model of which
high resolution meteorology is one. Through this, regional and interannual variations in climate
patterns across an ecosystem such as the boreal forests are represented in our fluxes through CASA’s
grid-box specific response, but the multiplication with the derived scaling factor will not alter the
predicted pattern of fluxes, only its magnitude in NEP across the whole ecosystem. Inherent in
this a-priori combination of regional quantities such as fluxes into larger areas is the aggregation
error described by Kaminski et al.[10]. Sensitivity test M2 addresses some of this potential error
in anticipation of higher resolution studies in the near future. Note that as the observing network
expands, we expect to be able to optimize for smaller ecoregions and thereby relax the assumption
on correct NEP patterns across large regions.

S1.1 2005 Input Data

For the last year of our inversion (2005) some data sets were not available in time to include in our
final results. This includes for instance the GFED2 weekly fire product through 2005 available now,
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Table 1: Ecosystem types considered for terrestrial fluxes. The land-surface characterization is
based on Olson et al, 1985 [11] and each 1◦×1◦ gridbox is assigned to one category based on the
locally dominant vegetation type. Percentages indicate the area associated with each category for
North America

category # Description
1 Conifer Forest (19.0%)
2 Broadleaf Forest (1.3%)
3 Mixed Forest (7.5%)
4 Grass/Shrub (12.6%)
5 Tropical Forest (0.3%)
6 Scrub/Woods (2.1%)
7 Semitundra (19.4%)
8 Fields/Woods/Savanna (4.9%)
9 Northern Taiga (8.1%)
10 Forest/Field (6.3%)
11 Wetland (1.7%)
12 Deserts (0.1%)
13 Shrub/Tree/Suc (0.1%)
14 Crops (9.7%)
15 Conifer Snowy/Coastal (0.4%)
16 Wooded tundra (1.7%)
17 Mangrove (0.0%)
18 Ice and Polar desert (0.0%)
19 Water (4.9%)
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instead of the monthly one through 2004 that we used. Our 2005 fire emissions are the climatological
average of those used in 2000-2004. Also, the CO2 measurements obtained from the Environment
Canada (EC) (sites FRD 06C0, ALT 06C0, OBS 06C0) currently only go through February 2005.
The 2005 fossil fuel emissions are identical to those used in 2004. Although economic statistics
are now available to extrapolate the fossil fuel emissions from previous years, we did not include
this information at the time we created the results. The month December of 2005 was run without
the United States 1◦×1◦ zoom region in the transport model. This is due to a change in model
resolution in the parent model from ECMWF in February of 2006. As a result of these caveats,
2005 currently has higher variances than 2004 and our estimate will likely be refined in the near
future.

Full documentation of the flux modules used in consecutive CarbonTracker releases can be found
at http://carbontracker.noaa.gov

S2 Observations

At the continuous sampling sites, we construct one daytime average (12:00-16:00 Local Time) mixing
ratio for each day in the time series, recognizing that our atmospheric transport model does not
always captures the continental nighttime stability regime while daytime well-mixed conditions are
better matched. This approach is partly based on analysis of TransCom Continuous results (Law
et al, manuscript submitted to GBC, 2007). Moreover, observations at sub-daily time scales are
likely to be strongly correlated and therefore add relatively little independent information to our
results. Also based on TransCom Continuous simulations, we decided to move a set of coastal sites
by one degree into the ocean to force the model sample to be more representative of the actual site
conditions. These sites are labeled for reference in the complete table of sites used in our study
(Table 2). Note that experiments Obs2 and Obs3 in Section S4 address the fairly small sensitivity
of our results to the choice of network.

We apply a further selection criterion during the assimilation to exclude non-Marine Boundary
Layer (MBL) observations that are very poorly forecast in our framework. We interpret an observed-
minus-forecasted (OmF) mixing ratio that exceeds 3 times the prescribed model-data mismatch as
an indicator that our modeling framework fails. This can happen for instance when an air sample
is representative of local exchange not captured well by our 1◦×1◦ fluxes, when local meteorological
conditions are not captured by our offline transport fields, but also when large-scale CO2 exchange
is suddenly changed (e.g. fires, pests, droughts) to an extent that can not be accommodated by
our flux modules. This last situation would imply an important change in the carbon cycle and
has to be recognized when analyzing the results. In accordance with the 3-σ rejection criterion,
∼2% of the observations are discarded through this mechanism in our assimilations. Table 2 gives
a summary of the sites used and the assimilation performance.

To assign model-data mismatches, we divided all observation sites into six categories. These
categories and respective model-data mismatches [ppm] are: marine boundary layer (0.75), conti-
nental sites (2.5), mixed land/ocean and mountain sites (1.50), continuous sites (3.0), and difficult
sites (7.5). These values represent subjective choices and are not based on an optimization or anal-
ysis of representation errors in our model. However, sites were categorized to yield an innovation
χ2 close to 1.0 in each category, for which the six absolute magnitudes were manually tuned to
achieve this as well. We tested one alternative for model-data mismatch in Section S4 (experiment
R2) which yielded higher posterior covariances and a poorer match to observations, as would be
expected. Figure 1 shows the location of all sites in Table 1. Figure 2 shows three examples of
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observed CO2 time series and their simulated counterparts resulting from the assimilation. A full
set of these figures for all sites listed in Table 1 is available from http://carbontracker.noaa.gov.
Figure 3 shows a similar comparison for independent CO2 mole fraction profiles measured from a
small aircraft over Poker Flat, Alaska, USA.

Figure 1: Locations of sites listed in Table 1.
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S3 The Data Assimilation System

The ensemble system used to solve for the scalar multiplication factors is similar to that in Peters
et al. [12]. In this work, we have restricted the length of the smoother window to only five weeks as
we found the derived flux patterns within North America to be robustly resolved well within that
time (experiments L2, L3 in Section S4). Longer window lengths tended to increase covariations
between parameters without substantial further decrease of the estimated variances or changes to
the parameter values. Moreover, tests with our transport model indicated that regional flux signals
had diffused over much of the Northern Hemisphere after five weeks, thus leaving almost no useful
gradients to infer sub-continental patterns. Finally, the small remaining signal after five weeks was
found to be relatively sensitive to the formulation of vertical exchange (diffusion and convection),
suggesting a possible large transport error component after this time, and the danger of biasing
our results. We caution the reader that although the North American flux results were found to
be robust after five weeks, regions of the world with less dense observational coverage (tropics,
Southern Hemisphere, parts of Asia) are likely to be poorly observable even after more than a
month of transport and therefore less robustly resolved. Although longer assimilation windows, or
long prior covariance length-scales, could potentially help to ’observe’ larger scale emission totals
from such areas, we focus our analysis here on a region more directly constrained by atmospheric
observations.

S3.1 Lag, members, localization

Ensemble statistics are created from 150 ensemble members, each with their own background CO2

concentration field to represent the time history (and thus covariances) of the filter. Experiment
N2 in Section S4 used twice as many ensemble members with no significant effect on the fluxes. To
dampen spurious noise due to the approximation of the covariance matrix, we apply localization
[13] for non-MBL sites only. This ensures that tall-tower observations within North America do
not inform on for instance tropical African fluxes, unless a very robust signal is found. In contrast,
MBL sites with a known large footprint and strong capacity to see integrated flux signals are not
localized.

S3.2 Background parameter values and dynamical model

In this work similar to Peters et al [12], the dynamical model is applied to the mean parameter
values λ as:

λb
t = (λa

t−2 + λa
t−1 + λp)/3.0 (1)

Where superscript a refers to analyzed quantities from previous steps, superscript b refers to the
background values for the new step, and superscript p refers to real a-priori determined values
that are fixed in time and chosen as part of the inversion set-up. Physically, this model describes
that parameter values λ for a new time step are chosen as a combination between optimized values
from the two previous time steps, and a fixed prior value. This operation is similar to the simple
persistence forecast used previously [12], but represents a smoothing over three time steps thus
dampening variations in the forecast of λb in time. The inclusion of the prior term λp acts as a
regularization [14] and ensures that the parameters in our system will eventually revert back to
predetermined prior values when there is no information coming from the observations. Note that
our dynamical model equation does not include an error term on the dynamical model, for the simple
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Figure 2: Observed and modeled time series of CO2 mole fractions for a small subset of sites used in
the assimilation. Modeled CO2 is co-sampled from the optimized fluxes run forward through TM5.
Note that each figure covers a different time period to show extra detail. A full set of figures for all
sites listed in Table 1 can be found at http://carbontracker.noaa.gov. Fraserdale data is courtesy
of Environment Canada.
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Figure 3: Observed and modeled time series of CO2 mole fractions for Poker Flat, Alaska aircraft
vertical profiles. Aircraft sites were not used in the assimilation. Modeled CO2 is co-sampled from
the optimized fluxes run forward through TM5. A full set of figures for all aircraft sites can be
found at http://carbontracker.noaa.gov.
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reason that we don’t know the error of this model. This is reflected in the treatment of covariance,
which is always set to a prior covariance structure and not forecasted with our dynamical model.

Our choice to use a combination of 3 states is a compromise between prescribing prior fluxes
at each step and letting the system propagate all information from one step to the next without
any guidance. Although the latter will work fine for the North American fluxes which are strongly
constrained by observations, fluxes in most of the rest of the world need the regularization to stay
within reasonable bounds in the absence of observational information and a proper dynamical model
for CO2 fluxes. The posterior covariance can be used to diagnose areas where minimal observational
constraints necessitate the use of the prior term. We furthermore note that the described dynamical
model imposes a smoothness on the estimated state vectors similar to a prior temporal covariance
structure, which we do not specify in our system. Next, we will describe the chosen values of λp.

S3.3 Covariances

Prior values for λp are all 1.0 to yield fluxes that are unchanged from their values predicted in
our modules. The prior covariance structure Pp describes the magnitude of the uncertainty on
each parameter, plus their correlation in space. The latter is applied such that the same ecosystem
types in different TransCom regions decrease exponentially with distance (L=2000km), and thus
assumes a coupling between the behavior of the same ecosystems in close proximity to one another
(such as coniferous forests in Boreal and Temperate North America). Furthermore, all ecosystems
within tropical TransCom regions are coupled decreasing exponentially with distance since we do
not believe the current observing network can constrain tropical fluxes on sub-continental scales,
and want to prevent large dipoles to occur in the tropics.

In our standard assimilation, the chosen standard deviation is 80% on land parameters, and
40% on ocean parameters. This reflects more prior confidence in the ocean fluxes than in terrestrial
fluxes, as is assumed often in inversion studies and partly reflects the lower variability and larger
homogeneity of the ocean fluxes. All parameters have the same variance within the land or ocean
domain. Because the parameters multiply the net-flux though, ecosystems with larger weekly mean
net fluxes have a larger variance in absolute flux magnitude. Experiments C2, C3 test alternatives
to the prescribed covariance structure and show some sensitivity especially to the choice of ocean
uncertainty.

S4 Uncertainty Estimates

Although our framework returns formal covariance estimates for each week of optimization, our ap-
proach to prescribe the background covariances at each step and draw from them randomly means
that temporal covariations over time scales of more than our assimilation window are not retained.
Annual mean covariance estimates therefore do not reflect the real uncertainty of our annual mean
fluxes and would not do justice to the tight match to over 27,000 observations we have achieved.
Even if the temporal covariations were available though, they would only reflect the random com-
ponent of the particular minimization problem we constructed, rather than a characterization of
the true uncertainties of the full assimilation system. It has been shown previously that, if sufficient
volumes of data is available, the random component becomes much smaller than the systematic
error component [15, 16].

As an alternative, we have conducted a set of sensitivity experiments aimed at characterizing
the spread in the flux estimates when taking different yet plausible approaches to the design of
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the assimilation system. Although this set is not comprehensive due to computational limitations,
it reflects the influence of certain fundamental choices one faces when designing a system like
CarbonTracker. We use the minimum and maximum flux values found in this set to denote the
range in which we expect the true flux to be. Our best estimate presented in the main text represents
the scenario we found most suitable based on an analysis of the input data itself, as well as the
comparison to assimilated and independent observations.

The alternative assimilation experiments for the period 2000-2002 used a coarse 6◦×4◦ degree
version of the TM5 transport model. Due to the cost of running our assimilation system ( 9 CPU
months for 2 years of assimilation), longer tests and more axis of variability were not assessed at
this point. The base run for this set of tests was a coarse TM5 run with ocean and fossil fuel
fluxes as in the main text, a neutral biosphere run from CASA as biological priors, and model-data
mismatches slightly higher than used in the final run. All sensitivity runs varied one aspect of the
assimilation setup.

Table 3 shows the estimated fluxes for the North American ecosystem from each simulation.
Note that all sensitivity runs except T2 were done at 6◦× 4◦, and we present results from 2001
only. Also note that the transport model itself is one of the largest sensitivities in flux inversions,
which was not varied in this study and thus not included in our range of estimates. Future work
will try to address this component in more detail.

B4: Biosphere flux modules follow monthly mean NEE from a GFED2 biosphere run of the CASA
model, combined with 3-hourly solar radiation and temperature from the TM5 model, GFED2 fires
are included
B2: Biosphere flux modules follow monthly mean NEE from a neutral biosphere run of the CASA
model, no fires are included
M2: Parameters λ follow a terrestrial ecosystem specification with 19 categories defined following
the ECMWF land-surface characterization. The ECMWF classification is based on the Global Land
Cover Characteristics (GLCC) data (http://edcdaac.usgs.gov/glcc/glcc.html) [17]. For comparison
purposes, ECMWF categories were approximately mapped to Olson categories.
O2: Ocean fluxes are 3-hourly CO2 based on monthly mean CO2 fluxes from the [18] joint ocean-
atmosphere inversion combined with ECMWF wind speed and surface pressure variability
C2: The standard deviation in the covariance matrix is 160% on land parameters, and 80% on
ocean parameters
C3: The standard deviation in the covariance matrix is 80% on land parameters, and 80% on ocean
parameters
R2: Model-data mismatch values are doubled
L2: Ensemble system runs with 3 weeks of lag
L3: Ensemble system runs with 10 weeks of lag
N2: Ensemble system runs with 300 ensemble members
Obs2: 50% of available observations are discarded at random each week
Obs3: Daily average mixing ratios from observatories and tall-towers around North America are
not included
F2: Fossil Fuel emission patterns based on Andres et al [20], scaled to 2000-2005 global total emis-
sions from EDGAR fast track without any seasonal variations
T2: The TM5 transport model runs at global 6◦×4◦, and two nested grids

Note that the best estimate, using a combination of settings from all experiments does not
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necessarily fall in the middle of the estimated range but might be near the edge of the distribution.
Because the estimates of the mean furthermore span the full six year period whereas the uncer-
tainty is for 2001 only, the best estimate might even be outside the range for some of the smaller
components.

Based on these results, lower model-data mismatches, higher transport model resolution, and
GFED2 prior fluxes for the biosphere and fires were included in the final results. The sensitivity
tests show that the results presented here are sensitive, but not in a systematic direction, against
a large number of changes, and that the setup chosen for our 6-year inversion is unlikely to have
biased annual mean results relative to other credible choices. Largest sensitivity in flux results is to
the choice of high resolution prior flux patterns (O2,B2,B4) and the TM5 model resolution (T2).
The runs with higher resolution (T2) and fires (B4) included provide a notably better match to the
full set of observations, whereas the different ocean (O2) prior and the use of monthly mean fluxes
(B2) only improved results at selected sites. North American flux results were largely insensitive to
the configuration of the inversion (L3, N2, R2, C2, C3) as long as the lag of the filter was not too
short (L2). The consistency of the results even when half of the observations were discarded (Obs2)
shows adequate redundancy in the information from different sites. The exclusion of continuous data
(Obs3) did not change our estimate significantly, suggesting that the two sets of observations can
safely be mixed without biasing the results towards one set. Note however that for the sensitivity
experiments the tower and flask sites were balanced by their model-data mismatch to contribute
equally, whereas tower sites were given higher relative weight in the final runs. Thus, it should not
be concluded that tower data do not add information over the regular flask network from these
tests.
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Table 3: Results of the sensitivity experiments conducted in this
study (see text). One aspect of the model was varied per sensitivity
run. The table includes only the Olson categories with significantly
large fluxes (>0.05 PgC/yr).

Olson Category 1 3 4 7 8 9 10 14 Total

B4 -0.38 -0.11 -0.09 -0.09 -0.05 -0.09 -0.08 -0.08 -1.01
B2 -0.37 -0.07 -0.05 -0.07 -0.02 -0.07 -0.10 -0.09 -0.84
L2 -0.22 -0.05 -0.03 -0.09 -0.01 -0.06 -0.07 -0.12 -0.66
R2 -0.19 -0.05 -0.03 -0.06 -0.03 -0.03 -0.1 -0.11 -0.60
C3 -0.19 -0.03 -0.04 -0.08 -0.04 -0.03 -0.08 -0.07 -0.58
O2 -0.19 -0.09 -0.02 -0.07 -0.02 -0.05 -0.09 -0.06 -0.58
C2 -0.13 -0.05 -0.01 -0.10 -0.01 -0.07 -0.10 -0.10 -0.57
M2a -0.20b -0.05c -0.04d -0.07e -0.04f -0.04g -0.03h -0.12i -0.56
Obs2 -0.27 -0.02 -0.04 -0.06 0.01 -0.04 -0.09 -0.04 -0.56
L3 -0.14 -0.02 -0.02 -0.07 -0.03 -0.05 -0.10 -0.10 -0.53
N2 -0.18 -0.06 -0.00 -0.09 -0.00 -0.04 -0.07 -0.08 -0.52
Obs3 -0.18 -0.01 -0.03 -0.06 -0.02 -0.03 -0.07 -0.12 -0.52
F2 -0.16 -0.04 -0.02 -0.08 -0.04 -0.03 -0.06 -0.04 -0.49
T2 -0.05 0.00 -0.06 -0.10 -0.05 -0.05 -0.05 -0.03 -0.40

aOlson et al categories were approximately matched by similar ecosystems in the Loveland et al. database
bConiferous Forest = Evergreen Needleleaf forest
cMixed Forest = Mixed Forest
dGrass/Shrub = Short Grass + Tall Grass + Evergreen Shrub
eSemi Tundra = Tundra
fFields/Woods/Savanna = Interrupted Forest (but large fraction overlaps with ECMWF Crops)
gNorthern Taiga = Deciduous shrubs + Bogs&Marshes
hForest/Field = Evergreen Broadleaf (but large fraction overlaps with ECMWF Crops)
iCrops = Crops, Mixed farming (but fraction of ECMWF Crops includes other Olson categories)

S5 Global Flux Results

Fluxes for the rest of the globe are presented in Table 4, and aggregated to annual means for
TransCom regions. For reference, we have included the annual means from Gurney et al [21], Baker
et al [14], and Jacobson et al [18] for the same areas. Note that these estimates span a different
time period and were estimated with a different inversion technique. Nevertheless, results generally
correspond quite well because there is similarity in the observations used, the flux prior models,
and even the transport models. Largest differences can be found in the tropical regions, and in
the partitioning of the NH land sink between Europe, North America, and the Asia. The small
tropical fluxes coupled to a smaller NH land sink are unique to our inversion and part of ongoing
more detailed analysis.

The higher resolution flux estimate by Rödenbeck et al. [19] spans the period 1982-2001 based
on some of the same flask data used in this study. Although the long-term mean North American
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Figure 4: Modeled minus observed CO2 for a set of 28,000 observations assimilated. The differences
are averaged by month and the bar indicates the standard deviation on the monthly mean. The
number below each bar denotes the number of observations used in the statistic. Units are ppm.

terrestrial uptake found by these authors is similar to our estimated uptake (∼0.5 PgC/yr), the
flux in the overlapping years 2000-2001 does not agree between the two studies. A sudden change
to positive carbon fluxes in Rödenbeck et al. [19] during this period is ascribed to the data from
one single site, Key Biscayne (see their Table 7). This feature disappears when Key Biscayne is not
included and the authors do not see this results as real behavior of the carbon cycle. It demonstrates
the sensitivity of their setup to individual sites, brought about by the relatively small number of
observations ingested. CarbonTracker (which also uses Key Biscayne data for those years) is less
susceptible to such swings because many more data points (one order of magnitude) control the
annual mean fluxes. In fact, one of our sensitivity tests demonstrates that removing half our data
at random, or all of our tower sites, does not push the annual mean North American fluxes outside
the range quoted in this work.

S6 Surface CO2 residuals and bias

Similar to Figure 4 in the main text, a seasonal view of the residuals (Model-Observed) in CO2

can be made to assess the bias of the optimized CO2 field against the assimilated observations.
This bias has to be close to zero in a well-designed assimilation experiment suggesting that the
errors in the modeling framework are indeed random. Figure 4 shows the month-by-month residual
statistics.

A seasonal cycle is discernible in the residuals indicating a seasonal bias in the performance
of the system. The model produced too low mole fractions in winter (DJF, -0.42±2.15 ppm) ,
and too high in summer (JJA, 0.55±3.06) even after the assimilation. We speculate that this is
due to the dynamical model that was applied (see Equation 1) which always pulls our analysis
towards the prior fluxes from the CASA GFED model. If that model has a seasonal cycle that is
too small [23] this would be reflected as the residuals in the figure. Further analysis of both the
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Table 4: 2001-2005 annual average aggregated fluxes (mean± one standard deviation from covari-
ance matrix) for TransCom regions from our system compared to similar estimates from Gurney et
al [21], Baker et al [14], and Jacobson et al [18]. The time span of each of these studies is indicated
in the table. A standard deviation of 999. indicates that this quantity was not calculated.

Region Name This work Baker et al [14] Gurney et al [21] Jacobson et al [18]
2000-2006 1991-2000 1991-1996 1995(∗)

(1) North America Boreal -0.16± 0.44 +0.14± 0.19 +0.20± 0.33 -0.13± 0.64
(2) North America Temperate -0.50± 0.60 -1.11± 0.23 -0.89± 0.39 -0.93± 0.76
(3) South America Tropical +0.02± 0.66 +1.07± 0.69 +0.74± 1.06 +3.07± 2.36
(4) South America temperate +0.09± 0.81 -0.64± 0.51 -0.24± 0.88 -0.84± 1.72
(5) Northern Africa -0.00± 0.52 +0.50± 0.50 +0.79± 1.01 +1.62± 2.95
(6) Southern Africa +0.20± 0.59 -0.62± 0.48 -0.51± 0.84 -1.74± 2.57
(7) Eurasian Boreal -0.58± 1.26 -0.33± 0.24 -0.36± 0.56 +0.04± 0.72
(8) Eurasian Temperate -0.32± 0.63 -0.31± 0.25 -0.41± 0.81 -0.81± 1.20
(9) Tropical Asia +0.08± 0.21 +0.29± 0.31 +0.27± 1.04 -0.50± 2.19
(10) Australia -0.09± 0.33 -0.11± 0.12 -0.10± 0.22 +0.15± 0.35
(11) Europe -0.25± 0.78 -0.97± 0.19 -0.96± 0.47 -1.05± 0.54
(12) North Pacific Temperate -0.43± 0.25 -0.56± 0.14 -0.32± 0.31 -0.45± 0.08
(13) West Pacific Tropics +0.12± 0.05 -0.11± 0.13 -0.21± 0.32 +0.12± 0.07
(14) East Pacific Tropics +0.55± 0.19 +0.57± 0.14 +0.66± 0.33 +0.31± 0.03
(15) South Pacific Temperate -0.29± 0.14 +0.09± 0.20 +0.51± 0.57 -0.50± 0.07
(16) Northern Ocean -0.34± 0.13 -0.22± 0.09 -0.27± 0.19 -0.21± 0.07
(17) North Atlantic Temperate -0.26± 0.14 -0.29± 0.13 -0.29± 0.33 -0.40± 0.06
(18) Atlantic Tropics +0.11± 0.04 +0.09± 0.14 -0.10± 0.24 +0.20± 0.11
(19) South Atlantic Temperate -0.16± 0.08 -0.21± 0.15 -0.05± 0.25 -0.24± 0.05
(20) Southern Ocean -0.50± 0.29 -0.25± 0.11 -0.55± 0.37 -0.15± 0.07
(21) Indian Tropical +0.17± 0.08 +0.24± 0.18 -0.33± 0.33 +0.13± 0.07
(22) South Indian Temperate -0.45± 0.20 -0.41± 0.12 -0.39± 0.29 -0.52± 0.04
(23) Non Optimized -0.02± 0.00 +0.00± 0.00 +0.00± 0.00 +0.00± 0.00

(24) Global Land -1.51± 2.27 -2.09± 0.53 -1.46± 0.98 -1.12± 0.23
(25) Global Ocean -1.48± 0.54 -1.06± 0.47 -1.34± 0.98 -1.71± 0.22
(26) Global Total -3.01± 2.33 -3.15± 0.25 -2.81± 0.01 -2.83± 0.07
(27) North America Total -0.65± 0.75 -0.97± 0.25 -0.69± 0.00 -1.06± 0.00
(28) NH Land -1.80± 999. -2.58± 999. -2.42± 999. -2.88± 999.
(29) Tropical Land +0.09± 999. +1.86± 999. +1.80± 0.00 +4.19± 999.
(30) NH Total -2.83± 999. -3.65± 999. -3.30± 999. -3.94± 999.
(31) Tropical Total +1.05± 999. +2.65± 999. +1.82± 999. +4.95± 999.

(*) Estimate for post-industrial era scaled to 1995 fossil fuel contribution
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CASA model and the CarbonTracker output, for instance against 13CO2 could possibly inform us
on future improvements.

Interestingly, the bias at the surface does not seem to correlate fully in size and magnitude with
the FT bias, nor lead it in an obvious way. The sign of the bias is the same though in 9 out of 12
months, suggesting that the surface bias is at least partly responsible for the FT bias. Another part
of the FT differences must be due to shortcomings in the modeled vertical transport as described
also by Stephens et al. [22] and Yang et al [23].

Assessing the influence of these biases on the flux results in nearly impossible without creating
an unbiased model first. The best we can therefore do is a simpler analysis of the bias magnitude
in relation to other components of our model. For instance, we can consider the 0.27 ppm FT
bias in summer to be a ’signal’ in the free troposphere resulting from fluxes that still need to be
adjusted. The influence of this ’signal’ on the fluxes will depend on a) the sensitivity of the surface
fluxes to the signal, b) the model’s skill in reproducing the observations relative to the signal, and
c) the magnitude of this signal relative to other signals pulling the fluxes. From additional analysis
of our results for June/July/August 2004, we have determined that the uncertainty in the current
set of summer fluxes causes an average spread of 2.1 ppm averaged over all aircraft observations.
This suggests the 0.27 ppm mixing ratio signal to be nearly an order of magnitude smaller than
the uncertainty in the random flux component we try to optimize and therefore unlikely to exert
much influence on the results (point a). The error bars in Figure 4 in the main text reflect a
similar conclusion derived differently: the bias is small compared to the model’s skill in matching
the observations in the first place and therefore the amount of flux information to be pulled from
the signal is small (point b). Most importantly though, we can see that a false gradient of 0.27
ppm in the mixing ratio field is very small compared to the ’real’ site-to-site gradients used by the
inversion which are on average 7.1 ppm for this period (point c). Although it is not completely fair
to compare a systematic bias to a random error component, these numbers suggest, at least to us,
that the effect of a systematic bias of 0.27±2.7 ppm is likely to have been small. Nevertheless, we
are investing substantial effort at the moment to reduce these biases in CarbonTracker by improving
the first-guess surface fluxes and investigating transport biases.

S7 Column CO2 at Park Falls, Wisconsin

The comparison of column CO2 at Park Falls, Wisconsin was done by selecting all days where
successful FTS observations were made between 9am and 10am local time (15-16 GMT). The
available observations were averaged and compared to the CarbonTracker columns between 9:30am
and 10:30 am local time for the same location. Before averaging, CarbonTracker mole fractions
were pressure weighted and convolved with one fixed averaging kernel resembling the kernel shown
in Figure 5b of Washenfelder et al. [24]. In addition, stratospheric CO2 values in CarbonTracker
were reset to a value of 368.0 ppm similar to the profile used in Washenfelder et al.. Generally,
CarbonTracker stratospheric values are biased low as a result of low initialization and the slow
exchange with the troposphere.

The time series of column average CO2 is shown in Figure 5. Absolute differences between the
two series shown are below 0.9 ppm for 68% of the points, but the mean offset is 0.5 ppm. This is
partly due to relatively high summer values in CarbonTracker compared to the observations. This
bias is similar to that seen in surface and free tropospheric data in that time of year. Note that
part of the good agreement between the Park Falls FTS data and CarbonTracker might be due to
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Figure 5: Comparison between column average CO2 from observations and from our modeled CO2

distribution for FTS observations at Parks Falls, Wisconsin, USA. The figure shows the general
good agreement between modeled CO2 and independent (non-assimilated) observations. The linear
correlation coefficient is r=0.96. Units are ppm.

the assimilation of surface CO2 observations from the tower at this location. Further tests of this
hypothesis are planned for the near future.
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